Dual Fatty Acylation of p59Fyn Is Required for Association with the T Cell Receptor ζ Chain through Phosphotyrosine–Src Homology Domain-2 Interactions
نویسندگان
چکیده
The first 10 residues within the Src homology domain (SH)-4 domain of the Src family kinase Fyn are required for binding to the immune receptor tyrosine-based activation motif (ITAM) of T cell receptor (TCR) subunits. Recently, mutation of glycine 2, cysteine 3, and lysines 7 and 9 was shown to block binding of Fyn to TCR zeta chain ITAMs, prompting the designation of these residues as an ITAM recognition motif (Gauen, L.K.T., M.E. Linder, and A.S. Shaw. 1996. J. Cell Biol. 133:1007-1015). Here we show that these residues do not mediate direct interactions with TCR ITAMs, but rather are required for efficient myristoylation and palmitoylation of Fyn. Specifically, coexpression of a K7,9A-Fyn mutant with N-myristoyltransferase restored myristoylation, membrane binding, and association with the cytoplasmic tail of TCR zeta fused to CD8. Conversely, treatment of cells with 2-hydroxymyristate, a myristoylation inhibitor, blocked association of wild-type Fyn with zeta. The Fyn NH2 terminus was necessary but not sufficient for interaction with zeta and both Fyn kinase and SH2 domains were required, directing phosphorylation of zeta ITAM tyrosines and binding to zeta ITAM phosphotyrosines. Fyn/zeta interaction was sensitive to octylglucoside and filipin, agents that disrupt membrane rafts. Moreover, a plasma membrane bound, farnesylated Fyn construct, G2A,C3S-FynKRas, was not enriched in the detergent insoluble fraction and did not associate with zeta. We conclude that the Fyn SH4 domain provides the signals for fatty acylation and specific plasma membrane localization, stabilizing the interactions between the Fyn SH2 domain and phosphotyrosines in TCR zeta chain ITAMs.
منابع مشابه
Multiple features of the p59fyn src homology 4 domain define a motif for immune-receptor tyrosine-based activation motif (ITAM) binding and for plasma membrane localization
The src family tyrosine kinase p59fyn binds to a signaling motif contained in subunits of the TCR known as the immune-receptor tyrosine-based activation motif (ITAM). This is a specific property of p59fyn because two related src family kinases, p60src and p56lck, do not bind to ITAMs. In this study, we identify the residues of p59fyn that are required for binding to ITAMs. We previously demonst...
متن کاملInhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids.
The ability of the Src family kinases Fyn and Lck to participate in signaling through the T cell receptor is critically dependent on their dual fatty acylation with myristate and palmitate. Here we identify a palmitate analog, 2-bromopalmitate, that effectively blocks Fyn fatty acylation in general and palmitoylation in particular. Treatment of COS-1 cells with 2-bromopalmitate blocked myristoy...
متن کاملMembers of the src family of nonreceptor tyrosine kinases share a common mechanism for membrane binding.
The src family of nonreceptor protein tyrosine kinases share extensive sequence homology, except for 80 NH2-terminal amino acids, thought to comprise a "unique" domain. This region is presumed to mediate interactions specific to each kinase. Recently, we identified three NH2-terminal lysine residues, crucial for pp60v-src membrane association. Surprisingly, these lysines are conserved among sev...
متن کاملDifferential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn
Recent observations suggest that the src-related tyrosine protein kinase p59fyn may be involved in antigen-induced T lymphocyte activation. As a result of alternative splicing, p59fyn exists as two isoforms that differ exclusively within a short sequence spanning the end of the Src Homology 2 (SH2) region and the beginning of the tyrosine protein kinase domain. While one p59fyn isoform (fynB) i...
متن کاملItk tyrosine kinase substrate docking is mediated by a nonclassical SH 2 domain surface of PLC 1
Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C1 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 145 شماره
صفحات -
تاریخ انتشار 1999